Solving Constraints in Model Transformations
نویسندگان
چکیده
Constraint programming holds many promises for model driven software development (MDSD). Up to now, constraints have only started to appear in MDSD modeling languages, but have not been properly reflected in model transformation. This paper introduces constraint programming in model transformation, shows how constraint programming integrates with QVT Relations as a pathway to wide spread use of our approach and describes the corresponding model transformation engine. In particular, the paper will illustrate the use of constraint programming for the specification of attribute values in target models, and provide a qualitative evaluation of the benefit drawn from constraints integrated with QVT Relations.
منابع مشابه
FUZZY LINEAR PROGRAMMING WITH GRADES OF SATISFACTION IN CONSTRAINTS
We present a new model and a new approach for solving fuzzylinear programming (FLP) problems with various utilities for the satisfactionof the fuzzy constraints. The model, constructed as a multi-objective linearprogramming problem, provides flexibility for the decision maker (DM), andallows for the assignment of distinct weights to the constraints and the objectivefunction. The desired solutio...
متن کاملA revisit of a mathematical model for solving fully fuzzy linear programming problem with trapezoidal fuzzy numbers
In this paper fully fuzzy linear programming (FFLP) problem with both equality and inequality constraints is considered where all the parameters and decision variables are represented by non-negative trapezoidal fuzzy numbers. According to the current approach, the FFLP problem with equality constraints first is converted into a multi–objective linear programming (MOLP) problem with crisp const...
متن کاملA New Method for Solving the Fully Interval Bilevel Linear Programming Problem with Equal Constraints
Most research on bilevel linear programming problem is focused on its deterministic form, in which the coefficients and decision variables in the objective functions and constraints are assumed to be crisp. In fact, due to inaccurate information, it is difficult to know exactly values of coefficients that used to construct a bilevel model. The interval set theory is suitable for describing and...
متن کاملAn Efficient Method to Solve the Mathematical Model of HIV Infection for CD8+ T-Cells
In this paper, the mathematical model of HIV infection for CD8+ T-cells is illustrated. The homotopy analysis method and the Laplace transformations are combined for solving this model. Also, the convergence theorem is proved to demonstrate the abilities of presented method for solving non-linear mathematical models. The numerical results for $N=5, 10$ are presented. Several $hbar$-c...
متن کاملA Mathematical Optimization Model for Solving Minimum Ordering Problem with Constraint Analysis and some Generalizations
In this paper, a mathematical method is proposed to formulate a generalized ordering problem. This model is formed as a linear optimization model in which some variables are binary. The constraints of the problem have been analyzed with the emphasis on the assessment of their importance in the formulation. On the one hand, these constraints enforce conditions on an arbitrary subgraph and then g...
متن کاملAn efficient modified neural network for solving nonlinear programming problems with hybrid constraints
This paper presents the optimization techniques for solving convex programming problems with hybrid constraints. According to the saddle point theorem, optimization theory, convex analysis theory, Lyapunov stability theory and LaSalleinvariance principle, a neural network model is constructed. The equilibrium point of the proposed model is proved to be equivalent to the optima...
متن کامل